Technical Information

Eccentric Reaction Force

![Graph showing eccentric reaction force for MST and MSTS models.](image)

- **MST**:
 - MST-63
 - MST-50
 - MST-40
 - MST-32
 - MST-25
 - MST-20
 - MST-16
 - MST-12
 - MST-8

- **MSTS**:
 - MSTS-63
 - MSTS-50
 - MSTS-40
 - MSTS-32
 - MSTS-25
 - MSTS-20
 - MSTS-16
 - MSTS-12
 - MSTS-8

Thrust reaction force

![Graph showing thrust reaction force for MST and MSTS models.](image)

- **MST**:
 - MST-63
 - MST-50
 - MST-40
 - MST-32
 - MST-25
 - MST-20
 - MST-16
 - MST-12
 - MST-8

- **MSTS**:
 - MSTS-63
 - MSTS-50
 - MSTS-40
 - MSTS-32
 - MSTS-25
 - MSTS-20
 - MSTS-16
 - MSTS-12
 - MSTS-8

Change in static torsional stiffness due to temperature

This is a value under the condition where the static torsional stiffness at 20°C is 100%.

The change of MST and MSTS in torsional stiffness due to temperature is small and the change in responsiveness is extremely small. If the unit is used under higher temperature, be careful about misalignment due to elongation or deflection of the shaft associated with thermal expansion.

![Graph showing static torsional stiffness change with temperature for MST and MSTS models.](image)

- **MST**
 - MST-50 100 50 10 0
 - MST-63 90 60 30 0

- **MSTS**
 - MSTS-50 100 50 10 0
 - MSTS-63 90 60 30 0

Slip torque

As in the table below, the clamping types MST-C and MSTS-C have different slip torque according to the bore diameter. Take care during selection.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Bore Diameter (mm)</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>6</th>
<th>6.35</th>
<th>7</th>
<th>8</th>
<th>9.525</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST-25C</td>
<td>3</td>
<td>3</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>MST-32C</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>MST-40C</td>
<td>1.2</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>MST-63C</td>
<td>2.1</td>
<td>2.7</td>
<td>2.7</td>
<td>2.9</td>
<td>5.9</td>
<td>8.7</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MST-12C</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
<td>1.7</td>
<td>3.8</td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>MST-16C</td>
<td>1.2</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>MST-20C</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>1.7</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>MST-25C</td>
<td>1.2</td>
<td>2.1</td>
<td>2.7</td>
<td>2.9</td>
<td>5.9</td>
<td>8.7</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MST-32C</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.7</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>MST-40C</td>
<td>1.2</td>
<td>2.1</td>
<td>2.7</td>
<td>2.9</td>
<td>5.9</td>
<td>8.7</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MST-50C</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.7</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>MST-63C</td>
<td>1.2</td>
<td>2.1</td>
<td>2.7</td>
<td>2.9</td>
<td>5.9</td>
<td>8.7</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- These are test values based on the conditions of shaft dimensional allowance: h7, hardness: 34 - 40 HRC, and screw tightening torque of the values described in MST-C and MSTS-C dimension tables. They are not guaranteed values.

- Slip torque changes with usage conditions. Carry out tests under conditions similar to actual conditions in advance.