

SUS Stainless steel Heat-resistance Chemical-proof Non-Magnetic High strength

Application

Main Body

Strength Class

FPD production equipment, semiconductor devices, sputtering equipment, aquatic applications, and general industrial machines

SNSX-88

8.8

SUS316L HiMo

Material/Finish

- High intensity socket head cap screws are made of stainless steel. (Strength Class 8.8 or 10.9)
- For applications that require both high strength and corrosion resistance.
- High strength per a screw is useful for space and weight saving by decreasing thread diameter and
- Screws with excellent heat resistance and corrosion resistance.
- Nonmagnetic.
- Conforms to JIS B 1176, ISO 4762, and DIN 912. ⇒Technical Information: JIS B 1176, ISO 4762

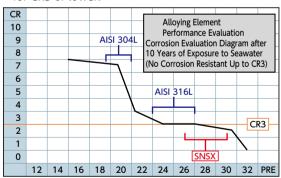
SNSX-88																		Unit:mm	
Dart Number	M (Coarse)		. 4										Strength Class	ъ.		В	L2*1	Mass (g)	
Part Number Nominal of Thread Pitch				L 1 2						Strength Class	DI	L1	Ь	L2* i	Mass (g)				
SNSX-M3-88	M3	0.5	6	8	10	12	16	20	25				8.8	5.5	3	2.5	18(L=25)	0.71 - 1.6	
SNSX-M4-88	M4	0.7	6	8	10	12	16	20	25				8.8	7	4	3	Full Thread	1.5 - 3.2	
SNSX-M5-88	M5	0.8			10	12	16	20	25	30			8.8	8.5	5	4	22(L=30)	2.7 - 5.6	
SNSX-M6-88	M6	1				12	16	20	25	30			8.8	10	6	5	Full Thread	5.1 - 8.3	
SNSX-M8-88	M8	1.25					16	20	25	30	35	40	8.8	13	8	6	28(L=40)	12 - 21	

*1: If the "L" value is other than the value in parentheses, the screw is full thread.

SNSX-109														Unit:mm
Part Number	M (Coarse)		L (2)						Strength Class	D ₁	1.	В	L2*1	Mass (g)
rait Nullibei	Nominal of Thread 1	Pitch							Strength Ctass	וט		Ь	LZ··	iviass (g)
SNSX-M6-109	M6	1	16	20	25	30	40	50	10.9	10	6	5	24(L≧40)	5.8 - 13
SNSX-M8-109	M8	1.25	16	20	25	30	40	50	10.9	13	8	6	28(L≧40)	12 - 25
SNSX-M10-109	M10	1.5		20		30	40	50	10.9	16	10	8	32(L=50)	23 - 39
SNSX-M12-109	M12	1.75				30	40	50	10.9	18	12	10	Full Thread	39 - 55

*1: If the "L" value is other than the value in parentheses, the screw is full thread.

Mechanical property


Part Number • Strength Class \ Property	Tensile Strength (N / mm²)	0.2% Proof Stress (N / mm²)	Elongation after Break Minimum (mm)
A2-50 • A4-50	500	210	0.6d
A2-70 • A4-70	700	450	0.4d
SNSX-88 8.8	800	640	0.3d
SNSX-109 10.9	1,000	900	0.2d

- Values in chart are for reference only. They are not guaranteed values.
- Durability by temperature (N/mm²)

Part Number • Material	20℃	100℃	200℃	300℃	400℃	500℃	600℃
SNSX-88 SUS316L HiMo	640	576	576	544	512	480	448
SNSX-109 SUS316L HiMo	900	855	855	855	810	810	765
SUSXM7	450	382	360	337	315	_	_
SCM435	1,100	1,020	925	825	_	_	_

- Values in chart are for reference only. They are not guaranteed values.
- Result of corrosion test by metal materials SUS316L HiMo steel used in **SNSX** is a special steel alloy with reduced carbon and increased Cr, Ni, and Mo. Reducing carbon shows an increased resistance to grain boundary corrosion cracking, and adding Cr and Mo increases resistance to pitting corrosion and crevice corrosion. In addition, adding Ni effectively reduces the risk of stress corrosion cracking.

The chart below shows the degree of corrosion after 10 years of exposure to conditions similar to seawater environment, and there was no corrosion for CR3 or lower.

Pitting Corrosion and Crevice Corrosion Countermeasures PRE value (Pitting Resistance Equivalent) PRE=%Cr+3.3×%Mo+16×%N;

• Sulfuric acid corrosion test (H₂SO₄, 50°C and mm / year)

Part Number \cdot Material \setminus Density	3%	10%	20%
SUS304	1.08	3	-
SUS316、SUS316L	0	0.3	1.3
SNSX-88 SNSX-109	0	0	0.44

- Values in chart are for reference only. They are not guaranteed values.
- Magnetic permeability comparison

U	•	,	'
Part Number	/ Material		Magnetic Permeability
SNSX-88 SUS	S316L HiMo		1.006
SNSX-109 SU	JS316L HiMo		1.007
SNSL SUS31	6L		1.006
SUSXM7			1.4

• Values in chart are for reference only. They are not guaranteed values.

• Part number specification

