Technical Information

Eccentric Reaction Force

This is the force generated when placing **XGT XGL XGS** in an eccentric condition. As the eccentric reaction force becomes smaller, the force acting on the shaft bearing also becomes smaller.

Change in static torsional stiffness due to temperature

This is a value under the condition where the static torsional stiffness at 20° is 100%.

Changes in the static torsion spring constant within the operating temperature are shown in the graph. Before using the unit, be aware of the deterioration of responsiveness.

Physical property and chemical resistance of highgain type rubber (HNBR)

	Effect
Aging Resistance	0
Weather Resistance	0
Ozone Resistance	0
Gasoline / Gas Oil	O - O
Benzene / Toluene	△ - O
Alcohol	0
Ether	X - △
Ketone (MEK)	×
Ethyl Acetate	× - △
Water	0
Organic Acid	0
High Concentration Inorganic Acid	0
Low Concentration Inorganic Acid	0
Strong Alkali	0
Weak Alkali	0

②: Excellent O: Available △: Available depending on conditions ×: Not available

• Thrust Reaction Force

This is the force generated when compressing **XGT XGL XGS** in the axial direction. As the thrust reaction force becomes smaller, the force acting on the motor also becomes smaller.

• Slip Torque

For set screw type **XGT XGS**, see Aluminum Alloy Coupling under "Slip Torque of Coupling - Set Screw Type" for details.

As in the table below, the clamping types **XGT-C**, **XGT-CS**, **XGS-CS**, and **XGL-C** have different slip torque according to the bore diameter. Take care during selection.

torque according to the bore diameter. Take care during selection. Unit:N·m														it:N·m				
Outside Diameter	Bore Diameter (mm)																	
	3	4	4.5	5	6	6.35	7	8	10	11	12	12.7	14	15	16	17	19	20
15	1	1.3	1.5	1.7	1.9													
19		2.2		2.7	3.1	3.3	3.8											
25				4.3	5	5.5		6.8										
27				3.8	5			6.8										
30								7.5	10	12								
34								8.3	10	10	12		13					
39									13		15	17	17	18	18	23	25	
44											16		19	20	21	23	25	27
56														45			50	61

- These are test values based on the conditions of shaft dimensional allowance: h7, hardness: 34 40 HRC, and screw tightening torque of the values described in XGT-C XGT-CS XGS-C XGS-CS XGL-C dimension tables. They are not guaranteed values.
- Slip torque changes with usage conditions. Carry out tests under conditions similar to actual conditions in advance